
WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Homework #6 due 11/27/2015

Problem 1. a.) Show that the Dirichlet problem for the Laplace operator in Ω ⊂ Rd

satisfies the Lopatinskii condition. Prove dim kerT = 0. (Here T is the operator defined
in (2.6.1) in the Lecture Notes.)

Solution. For the Laplacian we know that P (x, ξ) = ξ · ξ. Following Corollary 2.7.6 from
the lecture notes, consider the ordinary differential equation

P

(
x, ξ + in(x)

d

dy

)
Φ(y) =

(
ξ + in(x)

d

dy

)
·
(
ξ + in(x)

d

dy

)
Φ(y) =

[
|ξ|2 − d2

dy2

]
φ(y) = 0 ,

where ξ ⊥ n(x), ξ 6= 0. The bounded solution on the interval [0,∞) is Φ(y) = Ce−|ξ|y.
The Dirichlet boundary condition translates into Φ(0) = η. This initial value problem is
uniquely solvable and the solution is Φ(y) = ηe−|ξ|y.

Suppose that u ∈ kerT . Due to Corollary 2.6.9 we know that u ∈ C∞(Ω). Then, using
integration by parts gives

0 =

∫
Ω

u∆u dx = −
∫

Ω

|∇u|2 dx+

∫
∂Ω

u
∂u

∂n
dS .

Since u = 0 on ∂Ω, one has ∇u = 0 and u has to be constant. Because of the boundary
condition, one infers that u ≡ 0.

b.) Show that the Neumann problem for the Laplace operator in Ω ⊂ Rd satisfies the
Lopatinskii condition. Prove dim kerT = 1.

Solution. Using Corollary 2.7.6 the Neumann boundary condition translates into

B

(
x, ξ + in(x)

d

dy

)
Φ(y)

∣∣∣
y=0

= n(x) ·
(
ξ + in(x)

d

dy

)
Φ(y)

∣∣∣
y=0

= iΦ′(0) .

The initial value problem with the initial condition Φ′(0) = η is uniquely solvable with
Φ(y) = −η/|ξ|e−|ξ|y. To find the kernel of the operator T , one proceeds as in part a.) and
concludes that u has to be constant. Thus dim kerT = 1.

Problem 2. Consider the 4× 4 first-order differential operator in R3
+

P (∂)u =

[
∇× v +∇w
−∇ · v

]
.

Here u =

[
v
w

]
is a vector-valued function with four components, v is a vector-valued

function with three components, and the function w is scalar-valued.

a.) Show that the boundary condition B1u = n × v satisfies the Lopatinskii condition.
Here and henceforth n = −e3 is the exterior unit normal vector of R3

+ along ∂R3
+.
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Solution. Recall from homework #3 that

P (ξ) =


0 −iξ3 iξ2 iξ1

iξ3 0 −iξ1 iξ2

−iξ2 iξ1 0 iξ3

−iξ1 −iξ2 −iξ3 0


and observe that P (ξ)2 = |ξ|2I4. Hence, we know that detP (ξ) = ±[|ξ|2]2. Hence, the
bounded solutions to the system

(1) P

(
ξ1, ξ2,

1

i

d

dy

)
ϕ(y) = 0

are found as follows. For ξ1, ξ2 fixed and ξ2
2 + ξ2

2 6= 0 set ϕ(y) = eλyz where z ∈ C4 \ {0}.
Then the differential equation (1) gives

P

(
ξ1, ξ2,

1

i
λ

)
z = 0

which implies that detP (ξ1, ξ2, λ/i) = 0. This determinant is known and we obtain the
characteristic equation

[ξ2
1 + ξ2

2 − λ2]2 = 0

which gives λ = ±
√
ξ2

1 + ξ2
2 with algebraic multiplicity two. Since detP (ξ1, ξ2,−

√
ξ2

1 + ξ2
2/i) =

0 there is at least one non-zero vector z ∈ C4 such that

P

(
ξ1, ξ2,−

√
ξ2

1 + ξ2
2/i

)
v = 0

With ζ = (ξ1, ξ2,−
√
ξ2

1 + ξ2
2/i)

T = (ξ1, ξ2, i
√
ξ2

1 + ξ2
2)T one can write

P

(
ξ1, ξ2, i

√
ξ2

1 + ξ2
2

)
z = P (ζ)z =

[
ζ× ζ
ζT 0

]
z = 0

and one finds

z =

[
ζ
0

]
=


ξ1

ξ2

i
√
ξ2

1 + ξ2
2

0

 .

With trial and error one finds a second linearly independent vector y ∈ C4 with

y =


ξ2

−ξ1

0

−i
√
ξ2

1 + ξ2
2

 such that P (ζ)y = 0 .

Hence, the exponentially decaying solutions on R+ of P

(
ξ1, ξ2,

1

i

d

dy3

)
ϕ(y) = 0 are

(2) ϕ(y) =

c1


ξ1

ξ2

i
√
ξ2

1 + ξ2
2

0

+ c2


ξ2

−ξ1

0

−i
√
ξ2

1 + ξ2
2


 e−

√
ξ21+ξ22y .
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Observe that B1u = n × v = (v2,−v1)T . We will show that this boundary condition
satisfies the Lopatinskii condition. Let (ϕ1, ϕ2)(0) = ηC2. Then

c1ξ1 + c2ξ2 = η1

c1ξ2 − c2ξ1 = η2

This system has a unique solution,

c1 =
η1ξ1 + η2ξ2

ξ2
1 + ξ2

2

, c2 =
η1ξ2 − η2ξ1

ξ2
1 + ξ2

2

.

b.) Show that the boundary condition B2u = (n · v, w) satisfies the Lopatinskii condition.

Solution. Up to the very end, this problem is solved as part a.). However, note that
B2ϕ = (ϕ3(0), ϕ4(0)). In this case one has

c1 =
η1

i
√
ξ2

1 + ξ2
2

, c1 =
iη2√
ξ2

1 + ξ2
2

.

c.) Do these two boundary condition satisfy the Lopatinskii condition with respect to the
operator

Pα(x, ∂)u =

[
∇× v + α(x)∇w
−∇ · (α(x)v)

]
already considered in Homework #3? Suppose that α is a 3× 3 Hermitian matrix.

Solution. Yes, this is also true as long as α is positive definite. However, now one needs
to find the roots in λ for the quadratic equation

(ξ1, ξ2, λ/i)
Tα(ξ1, ξ2, λ/i)

which has one root with negative real part. In this connection it is significant that α is
Hermitian and positive definite. The solution is similar to (2) but will involve also the
components of α.

Problem 3. Can you find a boundary condition for the system in Problem 2 that does
not satisfy the Lopatinskii condition ?

If one prescribes only one scalar boundary condition, then the Lopatinskii condition can-
not hold. Two scalar conditions are needed to determined the constants c1 and c2 uniquely.


