WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#6 due 11/27/2015
Problem 1. a.) Show that the Dirichlet problem for the Laplace operator in $\Omega \subset \mathbb{R}^{d}$ satisfies the Lopatinskii condition. Prove $\operatorname{dim} \operatorname{ker} T=0$. (Here T is the operator defined in (2.6.1) in the Lecture Notes.)

Solution. For the Laplacian we know that $P(x, \xi)=\xi \cdot \xi$. Following Corollary 2.7.6 from the lecture notes, consider the ordinary differential equation
$P\left(x, \xi+i n(x) \frac{d}{d y}\right) \Phi(y)=\left(\xi+i n(x) \frac{d}{d y}\right) \cdot\left(\xi+i n(x) \frac{d}{d y}\right) \Phi(y)=\left[|\xi|^{2}-\frac{d^{2}}{d y^{2}}\right] \phi(y)=0$,
where $\xi \perp n(x), \xi \neq 0$. The bounded solution on the interval $[0, \infty)$ is $\Phi(y)=C e^{-|\xi| y}$. The Dirichlet boundary condition translates into $\Phi(0)=\eta$. This initial value problem is uniquely solvable and the solution is $\Phi(y)=\eta e^{-|\xi| y}$.

Suppose that $u \in \operatorname{ker} T$. Due to Corollary 2.6 .9 we know that $u \in C^{\infty}(\bar{\Omega})$. Then, using integration by parts gives

$$
0=\int_{\Omega} u \Delta u d x=-\int_{\Omega}|\nabla u|^{2} d x+\int_{\partial \Omega} u \frac{\partial u}{\partial n} d S .
$$

Since $u=0$ on $\partial \Omega$, one has $\nabla u=0$ and u has to be constant. Because of the boundary condition, one infers that $u \equiv 0$.
b.) Show that the Neumann problem for the Laplace operator in $\Omega \subset \mathbb{R}^{d}$ satisfies the Lopatinskii condition. Prove $\operatorname{dim} \operatorname{ker} T=1$.
Solution. Using Corollary 2.7.6 the Neumann boundary condition translates into

$$
\left.B\left(x, \xi+i n(x) \frac{d}{d y}\right) \Phi(y)\right|_{y=0}=\left.n(x) \cdot\left(\xi+i n(x) \frac{d}{d y}\right) \Phi(y)\right|_{y=0}=i \Phi^{\prime}(0)
$$

The initial value problem with the initial condition $\Phi^{\prime}(0)=\eta$ is uniquely solvable with $\Phi(y)=-\eta /|\xi| e^{-|\xi| y}$. To find the kernel of the operator T, one proceeds as in part a.) and concludes that u has to be constant. Thus $\operatorname{dim} \operatorname{ker} T=1$.

Problem 2. Consider the 4×4 first-order differential operator in \mathbb{R}_{+}^{3}

$$
P(\partial) u=\left[\begin{array}{c}
\nabla \times v+\nabla w \\
-\nabla \cdot v
\end{array}\right] .
$$

Here $u=\left[\begin{array}{c}v \\ w\end{array}\right]$ is a vector-valued function with four components, v is a vector-valued function with three components, and the function w is scalar-valued.
a.) Show that the boundary condition $B_{1} u=n \times v$ satisfies the Lopatinskii condition. Here and henceforth $n=-e_{3}$ is the exterior unit normal vector of \mathbb{R}_{+}^{3} along $\partial \mathbb{R}_{+}^{3}$.

2
Solution. Recall from homework \#3 that

$$
P(\xi)=\left[\begin{array}{cccc}
0 & -i \xi_{3} & i \xi_{2} & i \xi_{1} \\
i \xi_{3} & 0 & -i \xi_{1} & i \xi_{2} \\
-i \xi_{2} & i \xi_{1} & 0 & i \xi_{3} \\
-i \xi_{1} & -i \xi_{2} & -i \xi_{3} & 0
\end{array}\right]
$$

and observe that $P(\xi)^{2}=|\xi|^{2} I_{4}$. Hence, we know that $\operatorname{det} P(\xi)= \pm\left[|\xi|^{2}\right]^{2}$. Hence, the bounded solutions to the system

$$
\begin{equation*}
P\left(\xi_{1}, \xi_{2}, \frac{1}{i} \frac{d}{d y}\right) \varphi(y)=0 \tag{1}
\end{equation*}
$$

are found as follows. For ξ_{1}, ξ_{2} fixed and $\xi_{2}^{2}+\xi_{2}^{2} \neq 0$ set $\varphi(y)=e^{\lambda y} z$ where $z \in \mathbb{C}^{4} \backslash\{0\}$. Then the differential equation (1) gives

$$
P\left(\xi_{1}, \xi_{2}, \frac{1}{i} \lambda\right) z=0
$$

which implies that $\operatorname{det} P\left(\xi_{1}, \xi_{2}, \lambda / i\right)=0$. This determinant is known and we obtain the characteristic equation

$$
\left[\xi_{1}^{2}+\xi_{2}^{2}-\lambda^{2}\right]^{2}=0
$$

which gives $\lambda= \pm \sqrt{\xi_{1}^{2}+\xi_{2}^{2}}$ with algebraic multiplicity two. Since $\operatorname{det} P\left(\xi_{1}, \xi_{2},-\sqrt{\xi_{1}^{2}+\xi_{2}^{2}} / i\right)=$ 0 there is at least one non-zero vector $z \in \mathbb{C}^{4}$ such that

$$
P\left(\xi_{1}, \xi_{2},-\sqrt{\xi_{1}^{2}+\xi_{2}^{2}} / i\right) v=0
$$

With $\zeta=\left(\xi_{1}, \xi_{2},-\sqrt{\xi_{1}^{2}+\xi_{2}^{2}} / i\right)^{T}=\left(\xi_{1}, \xi_{2}, i \sqrt{\xi_{1}^{2}+\xi_{2}^{2}}\right)^{T}$ one can write

$$
P\left(\xi_{1}, \xi_{2}, i \sqrt{\xi_{1}^{2}+\xi_{2}^{2}}\right) z=P(\zeta) z=\left[\begin{array}{cc}
\zeta \times & \zeta \\
\zeta^{T} & 0
\end{array}\right] z=0
$$

and one finds

$$
z=\left[\begin{array}{c}
\zeta \\
0
\end{array}\right]=\left[\begin{array}{c}
\xi_{1} \\
\xi_{2} \\
i \sqrt{\xi_{1}^{2}+\xi_{2}^{2}} \\
0
\end{array}\right]
$$

With trial and error one finds a second linearly independent vector $y \in \mathbb{C}^{4}$ with

$$
y=\left[\begin{array}{c}
\xi_{2} \\
-\xi_{1} \\
0 \\
-i \sqrt{\xi_{1}^{2}+\xi_{2}^{2}}
\end{array}\right] \quad \text { such that } \quad P(\zeta) y=0
$$

Hence, the exponentially decaying solutions on \mathbb{R}_{+}of $P\left(\xi_{1}, \xi_{2}, \frac{1}{i} \frac{d}{d y_{3}}\right) \varphi(y)=0$ are

$$
\varphi(y)=\left\{c_{1}\left[\begin{array}{c}
\xi_{1} \tag{2}\\
\xi_{2} \\
i \sqrt{\xi_{1}^{2}+\xi_{2}^{2}} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
\xi_{2} \\
-\xi_{1} \\
0 \\
-i \sqrt{\xi_{1}^{2}+\xi_{2}^{2}}
\end{array}\right]\right\} e^{-\sqrt{\xi_{1}^{2}+\xi_{2}^{2}} y} .
$$

Observe that $B_{1} u=n \times v=\left(v_{2},-v_{1}\right)^{T}$. We will show that this boundary condition satisfies the Lopatinskii condition. Let $\left(\varphi_{1}, \varphi_{2}\right)(0)=\eta \mathbb{C}^{2}$. Then

$$
\begin{aligned}
& c_{1} \xi_{1}+c_{2} \xi_{2}=\eta_{1} \\
& c_{1} \xi_{2}-c_{2} \xi_{1}=\eta_{2}
\end{aligned}
$$

This system has a unique solution,

$$
c_{1}=\frac{\eta_{1} \xi_{1}+\eta_{2} \xi_{2}}{\xi_{1}^{2}+\xi_{2}^{2}}, \quad c_{2}=\frac{\eta_{1} \xi_{2}-\eta_{2} \xi_{1}}{\xi_{1}^{2}+\xi_{2}^{2}} .
$$

b.) Show that the boundary condition $B_{2} u=(n \cdot v, w)$ satisfies the Lopatinskii condition.

Solution. Up to the very end, this problem is solved as part a.). However, note that $B_{2} \varphi=\left(\varphi_{3}(0), \varphi_{4}(0)\right)$. In this case one has

$$
c_{1}=\frac{\eta_{1}}{i \sqrt{\xi_{1}^{2}+\xi_{2}^{2}}}, \quad c_{1}=\frac{i \eta_{2}}{\sqrt{\xi_{1}^{2}+\xi_{2}^{2}}} .
$$

c.) Do these two boundary condition satisfy the Lopatinskii condition with respect to the operator

$$
P_{\alpha}(x, \partial) u=\left[\begin{array}{c}
\nabla \times v+\alpha(x) \nabla w \\
-\nabla \cdot(\alpha(x) v)
\end{array}\right]
$$

already considered in Homework \#3? Suppose that α is a 3×3 Hermitian matrix.
Solution. Yes, this is also true as long as α is positive definite. However, now one needs to find the roots in λ for the quadratic equation

$$
\left(\xi_{1}, \xi_{2}, \lambda / i\right)^{T} \alpha\left(\xi_{1}, \xi_{2}, \lambda / i\right)
$$

which has one root with negative real part. In this connection it is significant that α is Hermitian and positive definite. The solution is similar to (2) but will involve also the components of α.

Problem 3. Can you find a boundary condition for the system in Problem 2 that does not satisfy the Lopatinskii condition?
If one prescribes only one scalar boundary condition, then the Lopatinskii condition cannot hold. Two scalar conditions are needed to determined the constants c_{1} and c_{2} uniquely.

